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Fracture parameters in Refel silicon 
carbide 

The critical stress intensity factor in plane strain 
(K~e) for ceramics is generally determined f rom 
three- or four-point bend tests. Summers et al. 
[1 ] have determined the correct equation to use 
for three-point bend tests but no similar evalua- 
tion has been made for four-point bending. 
The purpose of this note is to report and compare 
values of Kle for Refel silicon carbide calculated 
by applying various analytical expressions to 
data obtained f rom four-point bend tests. In 
addition we have investigated the effects of  
precracking on K~e. 

The specimens were cut from blocks, lapped 
with 13 gm silicon carbide on a cast iron wheel, 
and cleaned in hydrochloric acid then alcohol. 
A notch 250 gm wide with a tip radius ~ 120 gm 
was machined in each specimen. In some cases, 
notched specimens were precracked by bending 
in a jig, heating to 600~ and quenching in 
water. The specimen dimensions are given in Fig. 
1. The range of a/W ratios used in the present 
tests was 0.2 to 0.7. Four- rather than three-point 
bend tests were performed to avoid interaction 
between the contact stress and that at the root 
of  the crack [2] and the difficulties of  aligning the 
upper loading rod directly over the notch. In all 
tests a constant cross-head velocity of 0.05 cm 
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Figure 1 S p e c i m e n  d i m e n s i o n s  u s e d  in  the  p r e sen t  four -  

p o i n t  b e n d  tests .  W = s p e c i m e n  h e i g h t  (5 r am) ,  B = 

s p e c i m e n  w i d t h  (2.5 ram) ,  a = c r a c k  l eng th  (1 t o3 .5  ram) ,  

A = a r e a  o f  f r a c t u r e  face --  B ( W  - a),  L = m a j o r  s p a n  
(40 m m ) ,  l = m i n o r  s p a n  (10 m m ) ,  d = b e n d i n g  a r m  = 

(L - 1/2) (15 m m ) ,  P = a p p l i e d  load .  
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min -1 was applied. Uncontrolled fracture always 
occurred, i.e. the load displacement curves had 
no tails. 

Expressions for Kle can be derived in various 
ways. According to the Griffith criterion, fracture 
occurs when the strain energy release rate 
~U/aA reaches a critical value Ge, i.e. 

OU 
~ = a e -  (1) 

Ge is related to the critical stress intensity 
factor Ke by the expression 

~ g  2 e 
G e =  E (2) 

In plane strain Ke = Kle and ~ = (1 - v 2) where 
v is Poisson's ratio. Ge is obtained from con- 
ventional work of fracture tests for the case of 
controlled fracture, i.e. crack arrest, which is 
indicated by a tail on the load displacement 
curve. In this case U is estimated from the total 
area under the load displacement curve taking 
the projected surface area as A [3]. This method 
has the disadvantage that the values depend on 
a/W and the compliance of the test machine. 
An alternative treatment is as follows. Integra- 
tion of Equation 1 gives : 

U= GeA + U o. (3) 

The energy constant U 0 relates to the energy 
losses not involved in the creation of new 
surfaces. Thus, Ge and hence Kle can be deter- 
mined graphically from a series of values of  U 
and A for the case of  uncontrolled fracture. The 
appropriate relationship is Equation A in Table 
I. A fracture mechanics approach has been used 
to derive a modified version of Equation A [4, 5]. 
This analysis has not previously been applied to 
four-point bending, but the appropriate expres- 
sion (Equation B Table I) can be obtained 
similarly. The more usual fracture mechanics 
formulae (Equations C to E, Table I) have been 
derived by boundary collocation of a stress 

t559 



J O U R N A L  O F  M A T E R I A L S  S C I E N C E  9 ( 1 9 7 4 )  - L E T T E R S  

TABLE I 

Equations used to determine Klo Reference Definition of symbols 

= [(u~_- Uo) ,q , ,~  ~[(~f~f/2)- ~o]ELy 
(:A) _~1o L (1 - ,,~)A _1 -- L a ~ ~--~sTw--Y~.t 

= [ ! ~ , -  ~o)EI~,~ = ?[(,~,,~/2)- Uo],%~,~ 
(B) /s [(I -- v~)'qA_~ L" ~i'~ >TB~ J [4, 5] 

(C) /s = Ylrm ~/2= a ~/2 1 .99-  2.47 [61 
BW ~ 

_ r F(a/W) 1 

Pf = applied load at fracture 
Af = specimen deflection at fracture 

PtAt energy stored in the specimen 
U f  - -  

2 at fracture 

3Pfd 
- -  The outer fibre tensile stress 

B W  ~ 

F(a/W) is given in [7] n and $ are functions 
(related by the equation 7/ ~ ~b/[1 - (a/W)] 
which depend on the test method and a~ W 
ratio. In the case of four-point bending, 
is given by the analytical expression: 

= ' + 

I11 a LJ \ w/ .o_, 

funct ion,  Equa t ion  C being tha t  r ecommended  
by the A S T M  [6]. These three equat ions  differ 
in the var ia t ion  of  the funct ions Yl Y2 and  Ys with 
a/W,  par t icu lar ly  when a / W  exceeds 0.4. Equa-  
t ions C and D have previously been appl ied  to 
ceramics,  bu t  Equa t ion  E has not,  poss ibly  
because it is relat ively unknown.  

The values o f  Kte ca lcula ted  f rom Equat ions  
A to E are shown in Table  II .  As can be seen, for 
a given equa t ion  there is no difference in the 

Kle values de termined f rom notched or  notched 
and thermal ly  cracked samples,  p r o b a b l y  because 
small  sharp cracks are in t roduced  anyway at the 
notch tip dur ing machining.  Therefore,  since 
precracking  does not  influence Kle it is un- 
necessary in this material .  This conclusion is 
different f rom that  o f  M c L a re n  et aL [10] who 
measured/s  e for  bo th  mechanical ly  notched and 
precracked  samples of  Refel silicon carbide  in 
three-poin t  bending.  

TABLE II  Mean values of Klo for Refel silicon carbide calculated using Equations A to E 

No. of tests Equation 

A B C D E 

Machined notch 12 6.3 6.5 4.4 4.5 4.5 
1,0 -4- 0.9 ~ 0.1 • 0.1 • 0.1 

Machined notch q- thermal 7 5.3 5.7 4.4 4.5 4.2 
shock crack ~ 1.0 -4- 1,2 4- 0.5 4- 0.5 -4- 0.5 
All specimens 19 5.9 6.1 4.4 4.5 4.4 

• 0.9 -4- 1.0 -4- 0.2 -4- 0.2 • 0.2 

All errors quoted are standard errors calculated from Peter's formula [9]. 
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No difference is seen between the mean values 
of K~e calculated from Equations A and B for 
all specimens. This is because the mean values of 
A and ~/A are within 10 ~ of each other in this 
series of tests. However, these K~e values are 
significantly higher than those obtained f rom 
Equations C to E for both types of  notches 
because only the projected fracture area rather 
than the actual area can be measured. There is 
very little to choose between the mean values 
obtained f rom the other three methods i.e. 
Equations C to E. It  must be emphasized that a 
basic tenet of  fracture mechanics is that Kle for 
any material is independent of  specimen con- 
figuration and test method provided certain 
requirements are met [6]. Therefore, in the 
present case, to differentiate between Equations 
C to E it is necessary to examine the dependence 
of K1e on specimen dimensions, e.g. a/W. Table 
I I I  shows correlation coefficients [9] for a~ W and 
the Kle values obtained from Equations C to E. 

T A B L E  I I I  Correla t ion coefficients for Klc and  a /W 

Equa t ion  no.  Correla t ion coefficient, r 

C 0.43 
D 0.44 
E 0.11 

Only for Equation E is Kle essentially indepen- 
dent of  sample dimensions. Using this equation 
the mean value of Kle is 4.4 + 0.2 M N  m -~/2 for 
the nineteen tests. This corresponds to a Griffith 
flaw size of  45 lain, using a mean value of a = 
370 + 11 M N  m -2 obtained from ten measure- 
ments of bend strength on unnotched bars. As a 
further evaluation of Equation E, Kle was 
calculated for six notched specimens with 
B/W = 0.2 compared with a value of 0.5 used 
previously (see Fig. 1). The mean was 4.8 _+ 0.3 
M N  m -~/2 which agrees well with the above 
value. Thus it is concluded that, for four-point 

bending, Equation E provides the best estimate 
of  Klc. 
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